Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 281
Filtrar
1.
Fish Shellfish Immunol ; 144: 109248, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38030028

RESUMEN

Columnaris disease continues to inflict substantial losses among freshwater cultured species since its first description one hundred years ago. The experimental and anecdotal evidence suggests an expanded range and rising virulence of columnaris worldwide due to the warming global climate. The channel catfish (Ictalurus punctatus) are particularly vulnerable to columnaris. A recently developed live attenuated vaccine (17-23) for Flavobacterium columnare (now Flavobacterium covae sp. nov.) demonstrated superior protection for vaccinated catfish against genetically diverse columnaris isolates. In this study, we aimed to elucidate the molecular mechanisms and patterns of immune evasion and host manipulation linked to virulence by comparing gene expression changes in the host after the challenge with a virulent (BGSF-27) or live attenuated F. covae sp. nov. vaccine (17-23). Thirty-day-old fry were accordingly challenged with either virulent or vaccine isolates. Gill tissues were collected at 0 h (control), 1 h, and 2 h post-infection, which are two critical time points in early host-pathogen interactions. Transcriptome profiling of the gill tissues revealed a larger number (518) of differentially expressed genes (DEGs) in vaccine-exposed fish than those exposed to the virulent pathogen (321). Pathway analyses suggested potent suppression of early host immune responses by the virulent isolate through a higher expression of nuclear receptor corepressors (NCoR) responsible for antagonizing macrophage and T-cell signaling. Conversely, in vaccinated fry, we observed induction of Ca2+/calmodulin-dependent protein kinase II (CAMKII), responsible for clearing NCoR, and commensurate up-regulation of transcription factor AP-1 subunits, c-Fos, and c-Jun. As in mammalian systems, AP-1 expression was connected with a broad immune activation in vaccinated fry, including induction of CC chemokines, proteinases, iNOS, and IL-12b. Relatedly, divergent expression patterns of Src tyrosine kinase Lck, CD44, and CD28 indicated a delay or suppression of T-cell adhesion and activation in fry exposed to the virulent isolate. Broader implications of these findings will be discussed. The transcriptomic differences between virulent and attenuated bacteria may offer insights into how the host responds to the vaccination or infection and provide valuable knowledge to understand the early immune mechanisms of columnaris disease in aquaculture.


Asunto(s)
Enfermedades de los Peces , Infecciones por Flavobacteriaceae , Ictaluridae , Animales , Vacunas Atenuadas , Flavobacterium/fisiología , Mamíferos
2.
Fish Shellfish Immunol ; 144: 109305, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38128681

RESUMEN

Bacterial cold-water disease (BCWD) caused by Flavobacterium psychrophilum is one of the most serious bacterial diseases leading to significant economic loss for rainbow trout (Oncorhynchus mykiss) aquaculture. However, little is known about the systemic immune response of rainbow trout against F. psychrophilum infection. This study investigated the immune response of rainbow trout to F. psychrophilum infection using multiple experiments, including bacterial load detection, phagocyte activity assessment, enzyme activity evaluation, and gene expression profiling. Results showed that the spleen index and intestinal pathogen load reached a peak at 3 days post-infection, with strong pro-inflammatory gene expression observed in rainbow trout. Leukocytes RBA and PKA were significantly elevated in the spleen, blood and intestine at 7 days post-infection. Heat map analysis demonstrated that the spleen had a more substantial pro-inflammatory response compared to the intestine post-infection and exhibited higher expression levels of immune-related genes, including IgM, il1ß, il6, cd4, cd8a, cd8b, c1q, chathelicidin, inos, and lysozyme. Both Th1 and Th2 polarized responses in the spleen were activated, with Th2 (il4/13a, gata3) (FC > 4) being more intense than Th1 (tnfα, t-bet) (FC > 2). Tight junction proteins exhibited down-regulation followed by up-regulation post-infection. Collectively, the results of this study expand our current understanding of the immune response of rainbow trout post F. psychrophilum infection but also provide new avenues for investigation in salmonid aquaculture.


Asunto(s)
Enfermedades de los Peces , Infecciones por Flavobacteriaceae , Oncorhynchus mykiss , Animales , Infecciones por Flavobacteriaceae/veterinaria , Infecciones por Flavobacteriaceae/microbiología , Flavobacterium/fisiología , Inmunidad
3.
Fish Shellfish Immunol ; 134: 108586, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36740082

RESUMEN

Interleukin (IL) 4 and 13 are signature cytokines orchestrating Th2 immune response. Teleost fish have two homologs, termed IL-4/13A and IL-4/13B, and have been functionally characterized. However, what cells express IL-4/13A and IL-4/13B has not been investigated in fish. In this work, the recombinant IL-4/13A and IL-4/13B proteins of grass carp (Ctenopharyngodon idella) were produced in the Escherichia coli (E. coli) cells and purified. Monoclonal antibodies (mAbs) against the recombinant CiIL-4/13A and CiIL-4/13B proteins were prepared and characterized. Western blotting analysis showed that the CiIL-4/13A and CiIL-4/13B mAbs could specifically recognize the recombinant proteins expressed in the E. coli cells and HEK293T cells and did not cross-react with each other. Confocal microscopy revealed that the CiIL-4/13A+ and CiIL-4/13B+ cells were present in the gills, intestine and spleen and could be upregulated in fish infected with Flavobacterium columnare (F. columnare). Interestingly, the cells expressing CiIL-4/13A and CiIL-4/13B were mostly CD3γ/δ+ cells. The CD3γ/δ+/IL-4/13A+ and CD3γ/δ+/IL-4/13B+ cells were significantly upregulated in the gill filaments and the intestinal mucosa after F. columnare infection. Our results imply that the CD3γ/δ+/IL-4/13A+ and CD3γ/δ+/IL-4/13B+ cells are important for homeostasis and the regulation of mucosal immunity.


Asunto(s)
Carpas , Enfermedades de los Peces , Animales , Humanos , Carpas/metabolismo , Inmunidad Innata , Transducción de Señal , Interleucina-4/metabolismo , Inmunidad Mucosa , Escherichia coli , Células HEK293 , Linfocitos T , Flavobacterium/fisiología , Proteínas de Peces
4.
Fish Shellfish Immunol ; 132: 108442, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36410648

RESUMEN

Dietary carbohydrate levels can affect gut health, but the roles played by gut microbiota and gut epithelial cells, and their interactions remain unclear. In this experiment, we investigated gut health, gut microbiota, and the gene expression profiles of gut epithelial cells in grass carp consuming diets with different carbohydrate levels. Compared to the moderate-carbohydrate diet, low-carbohydrate diet significantly increased the relative abundance of pathogenic bacteria (Ralstonia and Elizabethkingia) and decreased the abundance of metabolism in cofactors and vitamins, implying a dysregulated gut microbiota and compromised metabolic function. Moreover, low-carbohydrate diet inhibited the expression levels of key genes in autophagy-related pathways in gut epithelial cells, which might directly lead to reduced clearance of defective organelles and pathogenic microorganisms. These aforementioned factors may be responsible for the imperfect organization of the intestinal tract. High-carbohydrate diet also significantly increased the abundance of pathogenic bacteria (Flavobacterium), which directly contributed to a decrease in the abundance of immune system of the microbiota. Furthermore, the active pathways of staphylococcus aureus infection and complement and coagulation cascades, as well as the inhibition of the glutathione metabolism pathway were observed. Above results implied that high-carbohydrate diet might ultimately cause severe gut damage by affecting immune function of microbiota, mentioned immune-related pathways, and the antioxidant capacity. Finally, the correlation network diagram revealed strong correlations of the differentially immune-related gene major histocompatibility complex class I antigen (MR1) with Enhydrobacter and Ruminococcus_gnavus_group in low-carbohydrate diet group, and Arenimonas in high-carbohydrate diet group, respectively, suggesting that MR1 might be a central target for immune responses in gut epithelial cells induced by gut microbiota at different levels of dietary carbohydrate. All these results provided insight in the development of antagonistic probiotics and target genes to improve the utilization of carbohydrate.


Asunto(s)
Carpas , Microbioma Gastrointestinal , Animales , Carbohidratos de la Dieta , Carpas/metabolismo , Dieta/veterinaria , Flavobacterium/fisiología , Regulación de la Expresión Génica , Alimentación Animal/análisis , Suplementos Dietéticos/análisis , Proteínas de Peces/genética
5.
Fish Shellfish Immunol ; 130: 244-251, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36122640

RESUMEN

The claudin family of proteins are pivotal components of tight junction (TJ) participating in the epithelial barrier function in fish. Our previous studies indicated that one of the claudins, claudin-4-like (OmCLDN4L) was differentially expressed in rainbow trout (Oncorhynchus mykiss) spleen post infection of Flavobacterium psychrophilum, which is the causative pathogen of bacterial coldwater disease (BCWD). However, little is known about the function of OmCLDN4L in rainbow trout against bacterial infection. In the present study, the OmCLDN4L was identified and functionally characterized from rainbow trout. The OmCLDN4L has an open reading frame (ORF) of 668 bp, encoding a 22.86 kDa four-transmembrane protein with function of bicellular tight junction and apical tight junction. OmCLDN4L has the highest similarity with CLDN28a, CLDN28b and CLDN30 in amino acid sequence. Phylogenetic analysis showed that all of CLDN4 and CLDN4-like from fish clustered together but diverged from their counterparts in mammals, with main differences lying in their N-terminus. RT-qPCR results indicated that OmCLDN4L was constitutively expressed in all tissues investigated under healthy conditions, primarily in mucus, liver, skin and intestine. The expression of OmCLDN4L in rainbow trout intestine was slightly down-regulated at day 1 while up-regulated at day 3 and day 7 post F. psychrophilum infection, with the similar profiling of CLDN30 and CLDN10e. The expression level of inflammatory cytokines TNF-α, IL4/13A, IL-6 and pattern recognition receptor TLR-2 showed the same trend with OmCLDN4L in the intestine at day 3 and day 7 post F. psychrophilum infection. Collectively, these findings demonstrate that OmCLDN4L participates in the immune response to bacterial infection, offering new insights into the molecular mechanism of intestinal barrier in rainbow trout against F. psychrophilum infection.


Asunto(s)
Enfermedades de los Peces , Infecciones por Flavobacteriaceae , Oncorhynchus mykiss , Animales , Claudina-4 , Citocinas , Flavobacterium/fisiología , Interleucina-4 , Interleucina-6 , Filogenia , Receptor Toll-Like 2 , Factor de Necrosis Tumoral alfa
6.
J Fish Dis ; 45(4): 535-545, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34990023

RESUMEN

Previously, rainbow trout fed deoxynivalenol (DON) or partially fed (pair-fed) for 4 weeks before and during experimental infection with Flavobacterium psychrophilum had significantly decreased mortality rates. Similar results were obtained in the present study after 12 days, but not after 6 days, feeding 5 ppm DON or pair-fed before infection. Furthermore, feeding 250 ppm chloroquine (CQ) also reduced mortality (p = .052) compared with controls and may have promise for treatment of some fish disease. Parallel groups of fish were maintained on the respective treatments for 15 days, with an additional group that was fasted, but were not infected to monitor autophagy. Fish that were fasted or fed DON had significantly increased LC3II in the liver and fasted fish had significantly decreased LC3II in muscle compared with controls using western blot. There was no difference in LC3II signal in the spleen of any treatment group. Fish that were fasted or pair-fed had significant up-regulation of the Atg genes atg4, atg7, lc3, gabarap and atg12 in muscle using quantitative PCR. Less alteration of Atg expression was seen in liver. Fish treated with CQ had significantly increased expression of atg4, becn1, lc3 and atg12 in the liver. Fish fed DON for 15 days had few alterations of Atg genes in either the liver or muscle. It is still not clear if autophagy is responsible for the resistance of rainbow trout fed DON, CQ or pair-fed before F. psychrophilum infection.


Asunto(s)
Enfermedades de los Peces , Infecciones por Flavobacteriaceae , Oncorhynchus mykiss , Animales , Autofagia/genética , Enfermedades de los Peces/microbiología , Infecciones por Flavobacteriaceae/microbiología , Flavobacterium/fisiología , Oncorhynchus mykiss/microbiología
8.
Nat Commun ; 12(1): 5700, 2021 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-34588437

RESUMEN

Bacterial biofilms are aggregates of surface-associated cells embedded in an extracellular polysaccharide (EPS) matrix, and are typically stationary. Studies of bacterial collective movement have largely focused on swarming motility mediated by flagella or pili, in the absence of a biofilm. Here, we describe a unique mode of collective movement by a self-propelled, surface-associated biofilm-like multicellular structure. Flavobacterium johnsoniae cells, which move by gliding motility, self-assemble into spherical microcolonies with EPS cores when observed by an under-oil open microfluidic system. Small microcolonies merge, creating larger ones. Microscopic analysis and computer simulation indicate that microcolonies move by cells at the base of the structure, attached to the surface by one pole of the cell. Biochemical and mutant analyses show that an active process drives microcolony self-assembly and motility, which depend on the bacterial gliding apparatus. We hypothesize that this mode of collective bacterial movement on solid surfaces may play potential roles in biofilm dynamics, bacterial cargo transport, or microbial adaptation. However, whether this collective motility occurs on plant roots or soil particles, the native environment for F. johnsoniae, is unknown.


Asunto(s)
Biopelículas , Flavobacterium/fisiología , Locomoción , Simulación por Computador , Microscopía Intravital , Técnicas Analíticas Microfluídicas , Raíces de Plantas/microbiología , Microbiología del Suelo , Imagen de Lapso de Tiempo
9.
Int J Mol Sci ; 22(13)2021 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-34199128

RESUMEN

Flavobacterium johnsoniae forms a thin spreading colony on nutrient-poor agar using gliding motility. As reported in the first paper, WT cells in the colony were sparsely embedded in self-produced extracellular polymeric matrix (EPM), while sprB cells were densely packed in immature biofilm with less matrix. The colony surface is critical for antibiotic resistance and cell survival. We have now developed the Grid Stamp-Peel method whereby the colony surface is attached to a TEM grid for negative-staining microscopy. The images showed that the top of the spreading convex WT colonies was covered by EPM with few interspersed cells. Cells exposed near the colony edge made head-to-tail and/or side-to-side contact and sometimes connected via thin filaments. Nonspreading sprB and gldG and gldK colonies had a more uniform upper surface covered by different EPMs including vesicles and filaments. The EPM of sprB, gldG, and WT colonies contained filaments ~2 nm and ~5 nm in diameter; gldK colonies did not include the latter. Every cell near the edge of WT colonies had one or two dark spots, while cells inside WT colonies and cells in SprB-, GldG-, or GldK-deficient colonies did not. Together, our results suggest that the colony surface structure depends on the capability to expand biofilm.


Asunto(s)
Adhesinas Bacterianas/genética , Biopelículas/crecimiento & desarrollo , Matriz Extracelular/metabolismo , Flavobacterium/fisiología , Adhesinas Bacterianas/metabolismo , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos/genética , Sistemas de Secreción Bacterianos/metabolismo , Flavobacterium/efectos de los fármacos , Flavobacterium/ultraestructura , Pruebas de Sensibilidad Microbiana , Mutación , Fenotipo
10.
Fish Shellfish Immunol ; 115: 43-57, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33992768

RESUMEN

IL-20 is a pleiotropic cytokine that belongs to the IL-10 family and plays an important biological role in tissue homeostasis and regulation of host immune defenses. IL-20 homologues have recently been discovered in fish, but their functions have not been studied. In this study, an IL-20 like (IL-20L) cytokine was cloned in grass carp (Ctenopharyngodon idella) and its bioactivities were investigated. Expression analysis showed that the CiIL-20L gene was constitutively expressed in tissues with the highest expression detected in the head kidney. It was upregulated in the head kidney after infection with Flavobactrium columnare (F. cloumnare) and grass carp reovirus II (GCRV II). The recombinant CiIL-20L produced in E. coli cells was shown to be effective in inducing the expression of Th cytokine genes (IFN-γ, IL-4/13A, IL-4/13B and IL-10), macrophage marker genes (arginase 2, IRF4, KLF4 and SOCS3) and inflammatory genes (IL-1ß, IL-6, IL-8 and TNFα) in the head kidney leukocytes when stimulated at 12 h. Long term culture (6 days) of head kidney macrophages in the presence of CiIL-20L leads to high expression of IRF4, TGFß1 and arginase 2. Our data suggest that IL-20 may play regulatory roles in promoting Th responses, macrophage differentiation and inflammation.


Asunto(s)
Carpas/genética , Carpas/inmunología , Enfermedades de los Peces/inmunología , Regulación de la Expresión Génica/inmunología , Inmunidad Innata/genética , Interleucinas/genética , Interleucinas/inmunología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Proteínas de Peces/química , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Infecciones por Flavobacteriaceae/inmunología , Infecciones por Flavobacteriaceae/veterinaria , Flavobacterium/fisiología , Perfilación de la Expresión Génica/veterinaria , Interleucinas/química , Filogenia , Reoviridae/fisiología , Infecciones por Reoviridae/inmunología , Infecciones por Reoviridae/veterinaria , Alineación de Secuencia/veterinaria
11.
Transgenic Res ; 30(2): 185-200, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33792795

RESUMEN

Channel catfish (Ictalurus punctatus) is the primary culture species in the US along with its hybrid made with male blue catfish, I. furcatus. In an effort to improve the nutritional value of channel catfish, the masou salmon Δ5-desaturase like gene (D5D) driven by the common carp beta-actin promoter (ßactin) was inserted into channel catfish. The objectives of this study were to determine the effectiveness of ßactin-D5D for improving n-3 fatty acid production in F1 transgenic channel catfish, as well as examine pleiotropic effects on growth, proximate analysis, disease resistance, and other performance traits. Transgenic F1 channel catfish showed a 33% increase in the relative proportion of n-3 fatty acids coupled with a 15% decrease in n-6 fatty acids and a 17% decrease in n-9 fatty acids when compared to non-transgenic full-siblings (P < 0.01, P < 0.01, P < 0.01). However, while the relative proportion of n-3 fatty acids was achieved, the total amount of fatty acids in the transgenic fish decreased resulting in a reduction of all fatty acids. Insertion of the ßactin-D5D transgene into channel catfish also had large effects on the body composition, and growth of channel catfish. Transgenic channel catfish grew faster, were more disease resistant, had higher protein and moisture percentage, but lower fat percentage than full-sib controls. There were sex effects as performance changes were more dramatic and significant in males. The ßactin-D5D transgenic channel catfish were also more uniform in their fatty acid composition, growth and other traits.


Asunto(s)
Animales Modificados Genéticamente/crecimiento & desarrollo , delta-5 Desaturasa de Ácido Graso/metabolismo , Ácidos Grasos/metabolismo , Proteínas de Peces/metabolismo , Flavobacterium/fisiología , Ictaluridae/crecimiento & desarrollo , Transgenes , Animales , Animales Modificados Genéticamente/inmunología , Animales Modificados Genéticamente/metabolismo , Animales Modificados Genéticamente/microbiología , delta-5 Desaturasa de Ácido Graso/genética , Proteínas de Peces/genética , Ictaluridae/inmunología , Ictaluridae/metabolismo , Ictaluridae/microbiología
12.
Int J Mol Sci ; 22(4)2021 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-33672911

RESUMEN

The Gram-negative bacterium Flavobacterium johnsoniae employs gliding motility to move rapidly over solid surfaces. Gliding involves the movement of the adhesin SprB along the cell surface. F. johnsoniae spreads on nutrient-poor 1% agar-PY2, forming a thin film-like colony. We used electron microscopy and time-lapse fluorescence microscopy to investigate the structure of colonies formed by wild-type (WT) F. johnsoniae and by the sprB mutant (ΔsprB). In both cases, the bacteria were buried in the extracellular polymeric matrix (EPM) covering the top of the colony. In the spreading WT colonies, the EPM included a thick fiber framework and vesicles, revealing the formation of a biofilm, which is probably required for the spreading movement. Specific paths that were followed by bacterial clusters were observed at the leading edge of colonies, and abundant vesicle secretion and subsequent matrix formation were suggested. EPM-free channels were formed in upward biofilm protrusions, probably for cell migration. In the nonspreading ΔsprB colonies, cells were tightly packed in layers and the intercellular space was occupied by less matrix, indicating immature biofilm. This result suggests that SprB is not necessary for biofilm formation. We conclude that F. johnsoniae cells use gliding motility to spread and maturate biofilms.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Flavobacterium/fisiología , Locomoción/fisiología , Proteínas Bacterianas/genética , Flavobacterium/genética , Flavobacterium/ultraestructura , Locomoción/genética , Microscopía Electrónica de Transmisión/métodos , Microscopía Fluorescente/métodos , Mutación , Imagen de Lapso de Tiempo/métodos
13.
mBio ; 12(2)2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33785624

RESUMEN

CRISPR-Cas immune systems adapt to new threats by acquiring new spacers from invading nucleic acids such as phage genomes. However, some CRISPR-Cas loci lack genes necessary for spacer acquisition despite variation in spacer content between microbial strains. It has been suggested that such loci may use acquisition machinery from cooccurring CRISPR-Cas systems within the same strain. Here, following infection by a virulent phage with a double-stranded DNA (dsDNA) genome, we observed spacer acquisition in the native host Flavobacterium columnare that carries an acquisition-deficient CRISPR-Cas subtype VI-B system and a complete subtype II-C system. We show that the VI-B locus acquires spacers from both the bacterial and phage genomes, while the newly acquired II-C spacers mainly target the viral genome. Both loci preferably target the terminal end of the phage genome, with priming-like patterns around a preexisting II-C protospacer. Through gene deletion, we show that the RNA-cleaving VI-B system acquires spacers in trans using acquisition machinery from the DNA-cleaving II-C system. Our observations support the concept of cross talk between CRISPR-Cas systems and raise further questions regarding the plasticity of adaptation modules.IMPORTANCE CRISPR-Cas systems are immune systems that protect bacteria and archaea against their viruses, bacteriophages. Immunity is achieved through the acquisition of short DNA fragments from the viral invader's genome. These fragments, called spacers, are integrated into a memory bank on the bacterial genome called the CRISPR array. The spacers allow for the recognition of the same invader upon subsequent infection. Most CRISPR-Cas systems target DNA, but recently, systems that exclusively target RNA have been discovered. RNA-targeting CRISPR-Cas systems often lack genes necessary for spacer acquisition, and it is thus unknown how new spacers are acquired and if they can be acquired from DNA phages. Here, we show that an RNA-targeting system "borrows" acquisition machinery from another CRISPR-Cas locus in the genome. Most new spacers in this locus are unable to target phage mRNA and are therefore likely redundant. Our results reveal collaboration between distinct CRISPR-Cas types and raise further questions on how other CRISPR-Cas loci may cooperate.


Asunto(s)
Bacteriófagos/genética , Sistemas CRISPR-Cas , Flavobacterium/genética , Flavobacterium/virología , ARN Viral/metabolismo , Adaptación Fisiológica , Bacteriófagos/fisiología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Flavobacterium/fisiología , Genoma Bacteriano , ARN Viral/genética
14.
Fish Shellfish Immunol ; 112: 81-91, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33675991

RESUMEN

Columnaris, a highly contagious bacterial disease caused by Flavobacterium columnare, is recognized as one of the most important infectious diseases in farmed tilapia, especially during the fry and fingerling stages of production. The disease is associated with characteristic lesions in the mucosa of affected fish, particularly their skin and gills. Vaccines delivered via the mucosa are therefore of great interest to scientists developing vaccines for this disease. In the present study, we characterized field isolates of F. columnare obtained from clinical columnaris outbreaks in red tilapia to select an isolate to use as a candidate for our vaccine study. This included characterizing its colony morphology, genotype and virulence status. The isolate was incorporated into a mucoadhesive polymer chitosan-complexed nanovaccine (CS-NE), the efficacy of which was determined by experimentally infecting red tilapia that had been vaccinated with the nanoparticles by immersion. The experimental infection was performed 30-days post-vaccination (dpv), which resulted in 89% of the unvaccinated control fish dying, while the relative percentage survival (RPS) of the CS-NE vaccinated group was 78%. Histology of the mucosal associated lymphoid tissue (MALT) showed a significantly higher presence of leucocytes and a greater antigen uptake by the mucosal epithelium in CS-NE vaccinated fish compared to control fish and whole cell vaccinated fish, respectively, and there was statistically significant up-regulation of IgT, IgM, TNF α, IL1-ß and MHC-1 genes in the gill of the CS-NE vaccinated group. Overall, the results of our study confirmed that the CS-NE particles achieved better adsorption onto the mucosal surfaces of the fish, elicited great vaccine efficacy and modulated the MALT immune response better than the conventional whole cell-killed vaccine, demonstrating the feasibility of the mucoadhesive nano-immersion vaccine as an effective delivery system for the induction of a mucosal immune response against columnaris disease in tilapia.


Asunto(s)
Vacunas Bacterianas/farmacología , Materiales Biomiméticos/farmacología , Cíclidos/inmunología , Enfermedades de los Peces/inmunología , Inmunidad Mucosa , Tejido Linfoide/inmunología , Nanopartículas/administración & dosificación , Animales , Vacunas Bacterianas/administración & dosificación , Materiales Biomiméticos/administración & dosificación , Enfermedades de los Peces/microbiología , Infecciones por Flavobacteriaceae/inmunología , Infecciones por Flavobacteriaceae/microbiología , Infecciones por Flavobacteriaceae/veterinaria , Flavobacterium/fisiología , Tejido Linfoide/efectos de los fármacos , Vacunación/veterinaria
15.
J Fish Dis ; 44(5): 645-653, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33565105

RESUMEN

Salmonid diseases caused by infections of Flavobacterium psychrophilum, the causative agent of bacterial coldwater disease, remain difficult to manage as novel, pathogenic strains continue to emerge in aquaculture settings globally. To date, much of the research regarding treatment options and vaccine development has focused on rainbow trout (Oncorhynchus mykiss), but other inland-reared salmonids are also impacted by this Gram-negative bacterium. As such, Atlantic salmon (Salmo salar) and brook trout (Salvelinus fontinalis) were injection-challenged with a variety of previously reported F. psychrophilum strains isolated from disease diagnostic cases in salmonids, as well as a standard and well-studied F. psychrophilum strain (CSF 259-93) known to be virulent in rainbow trout. In three separate virulence assessments (Trials A, B and C), strains US063 (isolated from lake trout; Salvelinus namaycush) and US149 (isolated from Atlantic salmon) caused a significantly higher cumulative per cent mortality (CPM) relative to other strains in Atlantic salmon (p <.001 for all trials), with US149 causing significantly greater mortality than US063 in Trials A (CPM 97% vs. 65%, p =.008) and B (CPM 96% ± 2.3% vs. 81.33% ± 4.8%, p =.014). Trial C used a lower dose (1.86 × 108  CFU/mL) for US149, resulting in a lower mortality (78.67% ± 9.33%) relative to Trials A and B. CSF259-93 did not cause significant mortality in any trials. In brook trout, the strain 03-179 (originally isolated from steelhead trout; Oncorhynchus mykiss) was significantly more virulent than any other (CPM 100% ± 0%, p <.001), followed by US063 (73% ± 3.8%) and US149 (40% ± 6.1%,) respectively. Again, CSF259-93 did not cause significant mortality relative to a mock challenge treatment. Results provide information about the applicability of strain selection in F. psychrophilum virulence testing in Atlantic salmon and brook trout, demonstrating the high virulence of US063 and US149 for these salmonid species. This information is applicable for the development of therapeutics and vaccines against F. psychrophilum infections and demonstrates the reproducibility of the experimental challenge model.


Asunto(s)
Enfermedades de los Peces/mortalidad , Infecciones por Flavobacteriaceae/veterinaria , Flavobacterium/fisiología , Salmo salar , Trucha , Animales , Enfermedades de los Peces/microbiología , Infecciones por Flavobacteriaceae/microbiología , Infecciones por Flavobacteriaceae/mortalidad
16.
Sci Rep ; 11(1): 967, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33441737

RESUMEN

Colony spreading of Flavobacterium johnsoniae is shown to include gliding motility using the cell surface adhesin SprB, and is drastically affected by agar and glucose concentrations. Wild-type (WT) and ΔsprB mutant cells formed nonspreading colonies on soft agar, but spreading dendritic colonies on soft agar containing glucose. In the presence of glucose, an initial cell growth-dependent phase was followed by a secondary SprB-independent, gliding motility-dependent phase. The branching pattern of a ΔsprB colony was less complex than the pattern formed by the WT. Mesoscopic and microstructural information was obtained by atmospheric scanning electron microscopy (ASEM) and transmission EM, respectively. In the growth-dependent phase of WT colonies, dendritic tips spread rapidly by the movement of individual cells. In the following SprB-independent phase, leading tips were extended outwards by the movement of dynamic windmill-like rolling centers, and the lipoproteins were expressed more abundantly. Dark spots in WT cells during the growth-dependent spreading phase were not observed in the SprB-independent phase. Various mutations showed that the lipoproteins and the motility machinery were necessary for SprB-independent spreading. Overall, SprB-independent colony spreading is influenced by the lipoproteins, some of which are involved in the gliding machinery, and medium conditions, which together determine the nutrient-seeking behavior.


Asunto(s)
Flavobacterium/metabolismo , Flavobacterium/fisiología , Movimiento/fisiología , Adhesinas Bacterianas/genética , Adhesinas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Flavobacterium/genética , Lipoproteínas/genética , Lipoproteínas/metabolismo , Mutación/genética
17.
Nat Microbiol ; 6(2): 221-233, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33432152

RESUMEN

Three classes of ion-driven protein motors have been identified to date: ATP synthase, the bacterial flagellar motor and a proton-driven motor that powers gliding motility and the type 9 protein secretion system in Bacteroidetes bacteria. Here, we present cryo-electron microscopy structures of the gliding motility/type 9 protein secretion system motors GldLM from Flavobacterium johnsoniae and PorLM from Porphyromonas gingivalis. The motor is an asymmetric inner membrane protein complex in which the single transmembrane helices of two periplasm-spanning GldM/PorM proteins are positioned inside a ring of five GldL/PorL proteins. Mutagenesis and single-molecule tracking identify protonatable amino acid residues in the transmembrane domain of the complex that are important for motor function. Our data provide evidence for a mechanism in which proton flow results in rotation of the periplasm-spanning GldM/PorM dimer inside the intra-membrane GldL/PorL ring to drive processes at the bacterial outer membrane.


Asunto(s)
Proteínas Bacterianas/química , Sistemas de Secreción Bacterianos/química , Flavobacterium/fisiología , Porphyromonas gingivalis/fisiología , Microscopía por Crioelectrón , Flavobacterium/metabolismo , Movimiento , Periplasma/metabolismo , Porphyromonas gingivalis/metabolismo , Dominios Proteicos , Multimerización de Proteína , Protones , Imagen Individual de Molécula
18.
Fish Shellfish Immunol ; 111: 69-82, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33508472

RESUMEN

This study evaluates the effects of dietary inclusion of grape pomace flour (GPF) on growth, antioxidant, anti-inflammatory, innate-adaptive immunity, and immune genes expression in Labeo rohita against Flavobacterium columnaris. In both normal and challenged fish the growth rate, hematology and biochemical parameters significantly increased when fed with 200 and 300 mg GPF enriched diets; similarly the activities of antioxidants and innate-adaptive immune parameters, such as malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione (GSH), phagocytic (PC), respiratory burst (RB), alternative pathway complement (ACP), lysozyme (Lyz), and total immunoglobulin M (IgM) significantly increased in both groups. Similarly, the immune, antioxidant, and anti-inflammatory-related gene mRNA expression was significantly up-regulated in head kidney (HK) tissues. The challenged fish fed without GPF always exhibited lower values of all the studied parameters. The results indicate that both normal and challenged fish treated with 200 mg GPF inclusion diet had significantly enhanced growth rate, antioxidant status, and immune defense mechanisms than with 300 mg GPF diet in L. rohita against F. columnaris.


Asunto(s)
Inmunidad Adaptativa/efectos de los fármacos , Antioxidantes/metabolismo , Cyprinidae/inmunología , Infecciones por Flavobacteriaceae/veterinaria , Harina , Expresión Génica/inmunología , Vitis/química , Alimentación Animal/análisis , Animales , Dieta/veterinaria , Suplementos Dietéticos/análisis , Relación Dosis-Respuesta a Droga , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/prevención & control , Infecciones por Flavobacteriaceae/inmunología , Infecciones por Flavobacteriaceae/microbiología , Infecciones por Flavobacteriaceae/prevención & control , Flavobacterium/fisiología , Inmunidad Innata/efectos de los fármacos , Distribución Aleatoria
19.
PLoS Pathog ; 17(1): e1009302, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33513205

RESUMEN

The health and environmental risks associated with antibiotic use in aquaculture have promoted bacterial probiotics as an alternative approach to control fish infections in vulnerable larval and juvenile stages. However, evidence-based identification of probiotics is often hindered by the complexity of bacteria-host interactions and host variability in microbiologically uncontrolled conditions. While these difficulties can be partially resolved using gnotobiotic models harboring no or reduced microbiota, most host-microbe interaction studies are carried out in animal models with little relevance for fish farming. Here we studied host-microbiota-pathogen interactions in a germ-free and gnotobiotic model of rainbow trout (Oncorhynchus mykiss), one of the most widely cultured salmonids. We demonstrated that germ-free larvae raised in sterile conditions displayed no significant difference in growth after 35 days compared to conventionally-raised larvae, but were extremely sensitive to infection by Flavobacterium columnare, a common freshwater fish pathogen causing major economic losses worldwide. Furthermore, re-conventionalization with 11 culturable species from the conventional trout microbiota conferred resistance to F. columnare infection. Using mono-re-conventionalized germ-free trout, we identified that this protection is determined by a commensal Flavobacterium strain displaying antibacterial activity against F. columnare. Finally, we demonstrated that use of gnotobiotic trout is a suitable approach for the identification of both endogenous and exogenous probiotic bacterial strains protecting teleostean hosts against F. columnare. This study therefore establishes an ecologically-relevant gnotobiotic model for the study of host-pathogen interactions and colonization resistance in farmed fish.


Asunto(s)
Enfermedades de los Peces/microbiología , Flavobacterium/fisiología , Vida Libre de Gérmenes , Interacciones Huésped-Patógeno , Microbiota , Oncorhynchus mykiss/microbiología , Animales , Acuicultura , Agua Dulce
20.
J Fish Dis ; 44(5): 521-531, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33476403

RESUMEN

Flavobacterium psychrophilum causes bacterial coldwater disease (BCWD) in salmonids, resulting in significant losses worldwide. Several serotyping and genetic studies of F. psychrophilum have suggested some geno-/serotypes may be either host-specific or generalistic in nature; however, this association has not been adequately explored in vivo using more natural exposure routes. Herein, F. psychrophilum isolate US19-COS, originally recovered from coho salmon (Oncorhynchus kisutch) and belonging to multilocus sequence typing clonal complex (CC) CC-ST9, and isolate US53-RBT, recovered from rainbow trout (Oncorhynchus mykiss) and belonging to CC-ST10, were serotyped via PCR, evaluated for proteolytic activity and utilized to determine their median lethal dose in immersion-challenged coho salmon fingerlings. US19-COS belonged to serotype 0, hydrolysed casein and gelatin but not elastin, led to fulminant multiorgan infections and elicited severe gross and microscopic pathology. In contrast, US53-RBT, belonging to serotype 2, hydrolysed all three substrates, but did not lead to detectable infections, disease signs or mortality in any exposed coho salmon despite proving virulent to rainbow trout in previous experiments. This study provides in vivo evidence for potential host specificity of some F. psychrophilum genotypes that can also be serologically distinct, a matter of importance towards better understanding F. psychrophilum disease ecology and epidemiology.


Asunto(s)
Enfermedades de los Peces/microbiología , Infecciones por Flavobacteriaceae/veterinaria , Flavobacterium/genética , Flavobacterium/fisiología , Genotipo , Oncorhynchus kisutch , Oncorhynchus mykiss , Animales , Infecciones por Flavobacteriaceae/microbiología , Especificidad del Huésped , Tipificación de Secuencias Multilocus/veterinaria , Proteolisis , Serogrupo , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...